

PU158TI Fire Pump Driver

O POWER RATING

RPM	Power rating kW(PS)	Torque N.m(kg.m)	Fuel consumption g/kW.h(g/PS.h)
1470	366 (498)	2384 (243)	192 (141)
1760	396 (538)	2148 (219)	199 (146)
2100	407 (553)	1854 (189)	216 (159)
2350	408 (555)	1658 (169)	234 (172)

Note: 1. The engine performance corresponds to ISO 3046.

2. Engines are not to be used for continuous duty. Engines are to be used only for stationary emergency standby fire pump service. According to NFPA 25 engines are to be tested 30 minutes per week at no pump flow and full pump flow once per year.

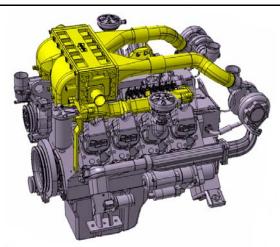
3. If needs continuous duty, Engine power is restricted to 353kW(480ps)@1800rpm.

© MECHANICAL SYSTEM

○Engine Model	PU158TI Fire Pump Driver
○Engine Type	V-type 4 cycle, water cooled
	Turbo charged & intercooled
O Combustion type	Direct injection
○Cylinder Type	Replaceable wet liner
• Number of cylinders	8
○Bore x stroke	128(5.04) x 142(5.59) mm(in.)
 Displacement 	14.618 (892.0) lit.(in ³)
 Compression ratio 	14.6 : 1
○ Firing order	1-5-7-2-6-3-4-8
 Injection timing 	18° BTDC
○ Dry weight	Approx. 1,000 kg (2,205 lb)
 Dimension 	1,229 x 1,140 x 1,205 mm
(LxWxH)	(48.4 x 44.9 x 47.4 in.)
○ Rotation	Counter clockwise viewed from Flywheel
○Fly wheel housing	SAE NO.1
○ Fly wheel	Clutch NO.14

O MECHANISM

Type
Number of valve
Valve lashes at cold


Over head valve Intake 1, exhaust 1 per cylinder Intake 0.25mm (0.0098 in.) Exhaust 0.35mm (0.0138 in.)

© VALVE TIMING

	Opening	Close
○ Intake valve	24 deg. BTDC	36 deg. ABDC
○Exhaust valve	63 deg. BBDC	27 deg. ATDC

© ENGINE EQUIPMENT

 Engine parts 	Fly wheel & housing
	Intake & exhaust manifold
	Water to air inter cooler
• Electrical parts	Stop solenoid of ETS type (only EAZPB)

© FUEL SYSTEM

• Injection pump	Bosch in-line "P" type
• Governor	Mechanical type (only EAZPB)
	Electrical type (only EAZPC)
○ Feed pump	Mechanical type
• Injection nozzle	Multi hole type
○ Fuel filter	Full flow, cartridge type
○ Used fuel	Diesel fuel oil

© LUBRICATION SYSTEM

pe	
ft	
Full flow, cartridge type	
High level 28 liters (7.40 gal.)	
.)	

© COOLING SYSTEM

○ Cooling method	Fresh water forced circulation
• Water capacity	20 liters (5.28 gal.)
(engine only)	
○ Water pump	Centrifugal type driven by belt
• Water pump Capacity	653 liters (173 gal.)/min
	at 2,350 rpm (engine)
○ Thermostat	Wax – pellet type
	Opening temp. 71°C
	Full open temp. 85°C
• Water flow in intercoole	r

• Water flow in intercooler

 Critical velocity 	2.0 m/s max.
Pressure drop	0.1 bar

© ELECTRICAL SYSTEM

^O Charging generator	28.5V x 45A alternator
○ Voltage regulator	Built-in type IC regulator
^O Starting motor	24V x 7.0kW
○ Battery Voltage	24V
• Battery Capacity	200 AH (recommended)
○ Starting aid (Option)	Block heater

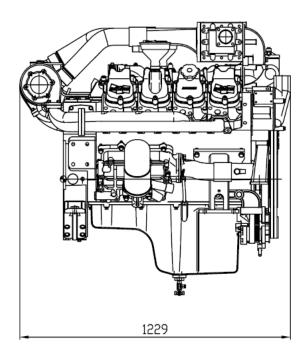
ONOISE DATA

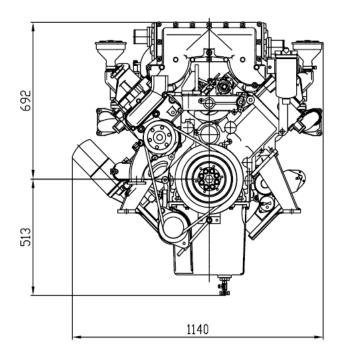
Test Standards
 Test Condition

Test Condition 1m at the Cylinder Block
 Calculated sound pressure

P P P			
RPM	Power [PS]	Octave Band [dB(A)]	
1760	538	100.0	
2100	553	103.0	
2350	555	104.5	

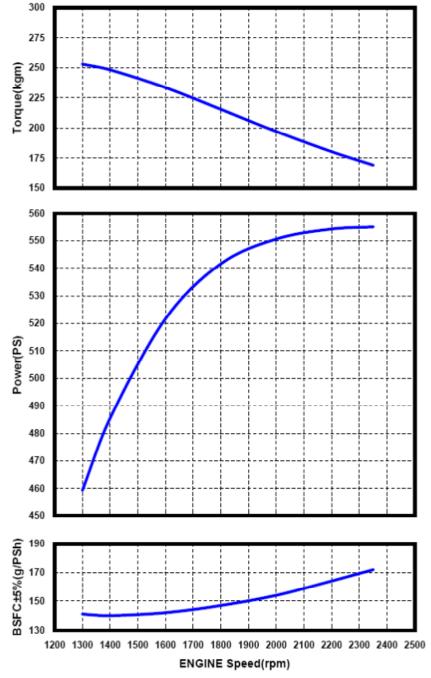
ISO-3744 / JIS-B8005


♦ CONVERSION TABLE


in. = mm x 0.0394	$lb/ft = N.m \ge 0.737$
PS = kW x 1.3596	U.S. gal = lit. x 0.264
psi = kg/cm2 x 14.2233	kW = 0.2388 kcal/s
in3 = lit. x 61.02	$lb/PS.h = g/kW.h \ge 0.00162$
$hp = PS \ge 0.98635$	$cfm = m^{3}/min \ x \ 35.336$
$lb = kg \ge 2.20462$	

\bigcirc Engineering data

• Water flow	653 liters/min	@2,350 rpm	
	584 liters/min	@2,100 rpm	
	489 liters/min	@1,760 rpm	
• Heat rejection to coolant	53.3 kcal/sec	@2,350 rpm	
	47.6 kcal/sec	@2,100 rpm	
	39.9 kcal/sec	@1,760 rpm	
^O Heat rejection to CAC	30.2 kcal/sec	@2,350 rpm	
	27 kcal/sec	@2,100 rpm	
	20.6 kcal/sec	@1,760 rpm	
○ Air flow	52.6 m ³ /min	@2,350 rpm	
	49.2 m ³ /min	@2,100 rpm	
	44.1 m ³ /min	@1,760 rpm	
○ Exhaust gas flow	93.7 m ³ /min	@2,350 rpm	
	81.1 m ³ /min	@2,100 rpm	
	70.3 m ³ /min	@1,760 rpm	
○ Exhaust gas temp.	572 °C	@2,350 rpm	
	529 °C	@2,100 rpm	
	512 °C	@1,760 rpm	
○ Max. permissible restrictions			
Intake system	Intake system 220 mmH ₂ O initial		
	635 mmH ₂ O 1	final	
Exhaust system	1000 mmH.O	max	


-. Exhaust system $1000 \text{ mmH}_2\text{O}$ max.

© PERFORMANCE CURVE

All data is based on the engine operating with fuel system, water pump, lubricating oil pump, air cleaner, and alternator; not included are compressor, fan, optional equipment, and driven components.

Data is based on operation at ISO standard 3046

conditions of 100 kPa barometric pressure, 100 m altitude, and 25 $^\circ C$ intake ambient temperature.

For sustained operation at high altitudes, the fuel rate of the engine should be adjusted to limit performance by 3 % per 300 m above 100 m altitude.

For sustained operation at high ambient temperatures, the fuel rate of the engine should be adjusted to limit performance by 2% per 11 °C above 25 °C.

Engine is certified at any speed between 1470 and 2350 RPM.

Head office

7-11, Hwasu-Dong, Dong-Gu, Incheon, Korea

Seoul Office Doosan Infracore Co. Ltd.,

22nd Floor, Doosan Tower, 18-12, Euljiro 6-ga, Jung-gu, Seoul, Korea. TEL : 82-2-3398-8400, e-mail : enginesales@doosan.con Web site : www.doosaninfracore.com

* Speccifications are subject to change without prior notice